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Special Issue of TNNLS

 [IEEE Transactions on Neural Networks
and Learning Systems Special Issue on
“Learning in Nonstationary and
Evolving Environments” in January
2014.

 Tackling Veracity (uncertainty of data)
and Velocity (analysis of streaming
data) in particular.
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Active Learning With Drifting Streaming Data

PCA Feature Extraction for Change Detection in
Multidimensional Unlabeled Data

Reacting to Different Types of Concept Drift: The
Accuracy Updated Ensemble Algorithm

Mining Recurring Concepts in a Dynamic Feature Space
Learning in the Model Space for Cognitive Fault
Diagnosis

Dealing With Concept Drifts in Process Mining

Learning Geotemporal Nonstationary Failure and
Recovery of Power Distribution

Continuous Dynamical Combination of Short and Long-
Term Forecasts for Nonstationary Time Series
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 Traditional machine learning: in the data space

e Learning in the model space (3 steps)

— Model generation: fit multiply models, e.g., generative
models, to the data

— Model measurement: define the distance between
these fitted models

— Model employment: develop learning algorithms in
the model space
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Model
Signal fitting model (e.g. Fitting Stage

Deterministic reservoir computing)

Discriminating
s Learner, e.g. one
class learner

Discriminating Stage
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 Disadvantages in data space
— Missing values
— High dimensionality
— time-varying and uncertain environments

 Model (function) space Is relatively smooth and
easy to understand
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174

118
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*y(t)
100 100 200
input signal output (or
: teacher)
¥ (t) dynamical signal

reservoir

e Solid arrows indicate fixed, random connections; dotted arrows trainable
connections.
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Deterministic Reservolir
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e Motivations to use the reservoir model :
— Input-output function with inner memory
— The model can be trained fast and run Iin real-time

 Limitations of reservoir computing
— Rely on random initialisation: unstable and dynamic

e Deterministic reservoir construction

te,

9

€ IEEE «Simple cycle topology with regular jumps



Distance in the Model

Intelligence S p ace

* In the model space, the m-norm distance between
models f:(x) and f.(x)is defined as follows:

S

atfio )= ([ D00, 500 )

Where p,, (fi(x). f2(x)) = [Ifi(x) — ()| 1S @ function to
measure the difference, ;) Is the probability

density function of the input domain, and C is the
Integral range.

<©IEEE



cmewen— L€AMNING Algorithms (in
the Model Space)

 Any distance based learning techniques can be
used in the model space
— Supervised learning: kernel approaches, kNN, etc

— unsupervised learning: manifold learning, kernel
clustering, etc

S

 For one class SVMs in the model space, the
data distance is replaced by the model distance

@J(ft fJ) — EXP {_O- ' LQ(f‘i? fJ)}

<©IEEE
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Sockety Average (NARMA): An Example
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Three faults:

»Actuator fault in pump 1
»Pump2 blocked
»Actuator fault in pump 2
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Case Study: Barcelona
Water Distribution System




Barcelona Water Distribution

Intelligence
Society N k . F |
etworK: Faults
g
ID Faulty Element Type | Magnitude | ID Faulty Element Type | Magnitude
| i0rioles 1 -25% 17 iStaClmCervello | 3 0.01%
2 iOrioles 2 -25% 18 iStaClmCervello | 4 0.5%
3 i0rioles 2 -10% 19 iStaClmCervello | 5 -
4 iOrioles 3 0.001% 20 | iStaCImCervello | 6 4
5 i0rioles 3 0.1% 21 iCesalpinal I 10%
6 i0rioles - 10% 22 iCesalpinal 2 -15%
7 i0rioles - 1% 23 iCesalpinal 3 0.01%
8 i0rioles 5 - 24 iCesalpinal . 0.75%
9 iOrioles 6 2 25 iCesalpinal 5 -
10 c175LOR 1 -20% 26 iCesalpinal 6 0.75
1 m 11 cl75LOR 2 -15% 27 c263CES l 30%
12 c175LOR 3 0.01% 28 c263CES 2 -15%
13 c175LOR - 1% 29 c263CES 3 0.025%
14 c175LOR 5 - 30 c263CES . 0.5%
15 iStaClmCervello | 1 -15% 31 c263CES 5 -
16 iStaClmCervello | 2 -7.5%
Type | Details & Parameter Type | Details & Parameter
| Additive offset (%MFD) 2 Additive drift (%MFD)
2 Additive incipient offset (%MFD) 5 Abrupt freezing (-)
3 Noise (variance %MFD) 6 Multiplicative offset (divided by)

o 31 faults in two sub-systems
e 2 deterministic reservoir models




IEEE .
Computational
¢ ritigence Fault Detection Rate
NARMA Van der Pol Three Tank Barcelona Water
Algorithm FDR FAR FDR FAR FDR FAR FDR FAR
T2 0.9072 | 0.1000 | 0.3009 | 0.0998 | 0.2311 | 0.0999 | 0.2316 | 0.1384
DBscan 1 0.0917 | 0.9146 | 0.2317 | 0.8958 | 0.0683 | 0.7981 | 0.1368
OCS-Model 1 0.1102 | 0.9310 | 0.0509 | 0.8521 | 0.1082 | 0.9313 | 0.2683
OCS-Signal 0.7042 | 0.2097 | 0.7686 | 0.2104 | 0.7521 | 0.2082 | 0.4920 | 0.3796
AP-Model 1 0 1.0000 | 0.3405 | 0.8407 | 0.1128 | 0.9014 | 0.2678
AP-Signal 1 0.5427 | 1.0000 | 0.7405 | 0.7155 | 0.2387 | 0.8879 | 0.2458
ARMAX-OCS 0.9882 | 0.0517 | 0.8727 0 0.9776 0 0.7369 | 0.1588
RC-OCS 0.9747 | 0.0558 | 0.9762 | 0.0158 | 0.8387 0 0.8271 | 0.1079
DRC-OCS(Sampling) | 0.9789 0 0.9804 0 0.9926 0 0.9327 | 0.0817
DRC-OCS 0.9921 0 0.9818 0 0.9919 0 0.9762 | 0.0473

« Comparisons of several algorithms in terms of
fault detection ability, i1.e. fault detection rate
(FDR) and false alarm rate (FAR).
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NARMA (3 classes) Van der Pol (4 classes)

Algorithm Classes | Precision | Recall | Specificity | Classes | Precision | Recall | Specificity
DBscan 4 0.6690 0.7650 0.8825 10 0.7629 0.6842 0.8018
AP-Model 271 0.9699 0.9698 0.9899 367 0.8778 0.8757 0.9585
ARMAX-OCS 5 0.9354 0.9229 0.9615 2 0.4309 0.4880 0.7868
RC-OCS 3 0.9637 0.9615 0.9808 6 0.9606 0.9583 0.9861
DRC-OCS(Sampling) 3 0.9683 0.9692 0.9914 5 0.9617 0.9726 0.9819
DRC-OCS 3 0.9861 0.9858 0.9929 5 0.9736 0.9731 0.9910

Three Tank (4 classes) Barcelona Water (32 classes)

Algorithm Classes | Precision | Recall | Specificity | Classes | Precision | Recall | Specificity
DBscan 14 0.8742 0.7561 0.9253 61 0.8019 0.7326 0.8654
AP-Model 272 0.9713 0.9704 0.9901 654 0.9366 0.9428 0.9751
ARMAX-OCS 5 0.9914 0.9923 0.9984 57 0.7826 0.7419 0.8237
RC-OCS 9 0.9182 0.8788 0.9596 44 0.8913 0.8942 0.9263
DRC-OCS(Sampling) 7 0.9940 0.9949 0.9988 39 0.9219 0.9310 0.9513
DRC-OCS 10 0.9931 0.9931 0.9977 48 0.9538 0.9640 0.9871

« Comparisons of several algorithms in terms of
fault isolation ability.
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Some Questions

« Raw data may be Big in terms of

volume, but could they be represented
by good models?

e Variety, Veracity, Variability in the raw
data pose challenges, could generative
models help to “smooth” them?

« Raw data might be unstructured, could
we learn to structure them at runtime?

<©IEEE
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 August 2014 Special Issue of IEEE
Computational Intelligence Magazine on
“*Computational Intelligence in Big Data”
— The Emerging "Big Dimensionality”
— Computational Intelligence Challenges and

Applications on Large-Scale Astronomical
Time Series Databases

e “ .. The LSST will stream data at rates of 2
Terabytes per hour ...”

$IEEE



s UpCOMING CIM Special
S Issue

e Special Issue of IEEE Computational
Intelligence Magazine on “New Trends of
Learning in Computational Intelligence”

e Z.H. Zhou, N. V. Chawla, Y. Jin, and G. J.
Willlams. “Big data opportunities and
challenges: Discussions from data
analytics perspectives,” IEEE
Computational Intelligence Magazine,
2014 (to appear).

$IEEE



Special Issue of TCIAIG

 |IEEE Transactions on Computational
Intelligence and Al in Games (T-CIAIG)
Special iIssue on “Game Data Mining
and Player Behavior Analysis Using In-
Game Data”

 Big Data in games.
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Conferences

 Panel discussions on Big Data at WCCI
2014 in Beljing, China, 7-12 July 2014.

e First IEEE Symposium on Computational
Intelligence in Big Data, 9-12 December
2014, Orlando, Florida, USA, as part of
SSCI'2014.

e« 2015 International Conference on Data
Science and Advanced Analytics (IEEE
DSAA2015), 19-21 October 2015,
Grenoble, France.
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Technical Activities

e The DMTC (Data Mining Technical
Committee) has been changed to Data
Mining and Big Data Analytics Technical
Committee

« Two Big Data related task forces:

— Big Data
— Data Science and Advanced Analytics

$IEEE
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Neural Networks TC

Fuzzy Systems TC

Evolutionary Computation TC
Computational Finance and Economics TC
Games TC

Adaptive Dynamic Programming and
Reinforcement Learning TC

Emergent Technologies TC
Intelligent Systems Applications TC
Bioinformatics and Bioengineering TC

@-IE%Etonomous Mental Development TC



Looking Forward
--- CIS Perspective

S

Society

e Qutreach to non-academic communities In
promoting and supporting our members in
BD related activities.

— One outreach workshop in Lima in March
2014

— Another workshop in URI on October 3.

e Close collaborations with other IEEE
socileties in joint publications,
conferences, technical activities,

education activities, ...
< IEEE



S Looking Further
S --- CIS Perspective (I)

 There appears to be more talks on
Volume than other Vs, e.qg., veracity,
variability, and velocity.

* Onereason might be that volume is
easier to measure.

e CIS has been keen on other Vs as well,
e.g., our TNNLS special issues.

$IEEE



Looking Further
--- CIS Perspective (ll)
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e Is there a unique set of core knowledge
that defines and underpins the Big Data?

—Where does it different from existing fields
other than a vague word “Big”?

—What are the new scientific questions that
are unique to the Bid Data?

— How can we capture such core knowledge?

— How can we provide education programs to
our members?

$IEEE



smeen LOOKING Even Further
--- CIS Perspective (I)
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e What could and should be added to the
core knowledge?

 What new technologies could be

developed based on such core
knowledge?

<©IEEE



Looking Even Further
--- CIS Perspective (ll)

e How could CIS promote the fundamental
advances of the BD field, especially In
algorithms and analytics?

« How could CIS support its members In
their pursue of the field? What would be

appropriate education programs?

 What are the new opportunities for our
members?

$IEEE



Thank youl!
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