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Overview 
• Publications 

– An illustrative example 
• Conferences 
• Technical activities 



CIS Publications 

IF 4.37 IF 6.30 IF 5.54 

• IEEE Computational Intelligence Magazine 
• IEEE Transactions on Autonomous Mental Development 
• IEEE Transactions on Computational Intelligence and AI in Games 
• And other co-sponsored Transactions 



Special Issue of TNNLS 

• IEEE Transactions on Neural Networks 
and Learning Systems Special Issue on 
“Learning in Nonstationary and 
Evolving Environments” in January 
2014. 

• Tackling Veracity (uncertainty of data) 
and Velocity (analysis of streaming 
data) in particular. 



Some of the SI Papers 
• Active Learning With Drifting Streaming Data  
• PCA Feature Extraction for Change Detection in 

Multidimensional Unlabeled Data  
• Reacting to Different Types of Concept Drift: The 

Accuracy Updated Ensemble Algorithm  
• Mining Recurring Concepts in a Dynamic Feature Space  
• Learning in the Model Space for Cognitive Fault 

Diagnosis   
• Dealing With Concept Drifts in Process Mining  
• Learning Geotemporal Nonstationary Failure and 

Recovery of Power Distribution  
• Continuous Dynamical Combination of Short and Long-

Term Forecasts for Nonstationary Time Series  
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An Example 

• Traditional machine learning：in the data space 
• Learning in the model space (3 steps)  

– Model generation: fit multiply models, e.g., generative 
models, to the data 

– Model measurement: define the distance between 
these fitted models 

– Model employment: develop learning algorithms in 
the model space 



Learning in the model space 

•Model 
Fitting Stage 

•Discriminating Stage 



Why Model Space? 

• Disadvantages in data space 
– Missing values 
– High dimensionality  
– time-varying and uncertain environments 
– … 

• Model (function) space is relatively smooth and 
easy to understand 



Reservoir Model 

• Solid arrows indicate fixed, random connections; dotted arrows trainable 
connections. 

 

•u(t) 

•y(t) 



Deterministic Reservoir 
Model 

• Motivations to use the reservoir model : 
– input-output function with inner memory 
– The model can be trained fast and run in real-time 

• Limitations of reservoir computing 
– Rely on random initialisation: unstable and dynamic 

• Deterministic reservoir construction 
 
 

•Simple cycle topology with regular jumps 



Distance in the Model 
Space 

• In the model space, the m-norm distance between 
models        and        is defined as follows:  

 
 
 where                                                 is a function to 

measure the difference,        is the probability 
density function of the input domain, and C is the 
integral range. 

 
 
 



Learning Algorithms (in 
the Model Space) 

• Any distance based learning techniques can be 
used in the model space 
– Supervised learning: kernel approaches, kNN, etc 
– unsupervised learning: manifold learning, kernel 

clustering, etc 
– … 

 
• For one class SVMs in the model space, the 

data distance is replaced by the model distance 
 
 
 



Nonlinear Auto-Regressive Moving 
Average (NARMA): An Example 

•10 order 
•20 order 
•30 order  



Signal vs. Model Spaces 

•Signal Space •Reservoir 
Model Space 



Three Tank System 

•Three faults: 
Actuator fault in pump 1 
Pump2 blocked 
Actuator fault in pump 2 



Case Study: Barcelona 
Water Distribution System 



Barcelona Water Distribution 
Network: Faults 

• 31 faults in two sub-systems 
• 2 deterministic reservoir models 



Fault Detection Rate 

• Comparisons of several algorithms in terms of 
fault detection ability, i.e. fault detection rate 
(FDR) and false alarm rate (FAR). 
 



Cognitive Fault Isolation 

• Comparisons of several algorithms in terms of 
fault isolation ability. 



Some Questions 

• Raw data may be Big in terms of 
volume, but could they be represented 
by good models? 

• Variety, Veracity, Variability in the raw 
data pose challenges, could generative 
models help to “smooth” them? 

• Raw data might be unstructured, could 
we learn to structure them at runtime? 



Overview 
• Publications 

– An illustrative example 
• Conferences 
• Technical activities 



Special Issue of CIM 

• August 2014 Special Issue of IEEE 
Computational Intelligence Magazine on 
“Computational Intelligence in Big Data” 
– The Emerging "Big Dimensionality"  
– Computational Intelligence Challenges and 

Applications on Large-Scale Astronomical 
Time Series Databases  

• “… The LSST will stream data at rates of 2 
Terabytes per hour …” 



Upcoming CIM Special 
Issue 

• Special Issue of IEEE Computational 
Intelligence Magazine on “New Trends of 
Learning in Computational Intelligence”  

• Z. H. Zhou, N. V. Chawla, Y. Jin, and G. J. 
Williams. “Big data opportunities and 
challenges: Discussions from data 
analytics perspectives,” IEEE 
Computational Intelligence Magazine, 
2014 (to appear). 
 



Special Issue of TCIAIG 

• IEEE Transactions on Computational 
Intelligence and AI in Games (T-CIAIG) 
Special issue on “Game Data Mining 
and Player Behavior Analysis Using in-
Game Data” 

• Big Data in games. 
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Conferences 

• Panel discussions on Big Data at WCCI 
2014 in Beijing, China, 7-12 July 2014. 

• First IEEE Symposium on Computational 
Intelligence in Big Data, 9-12 December 
2014, Orlando, Florida, USA, as part of 
SSCI’2014. 

• 2015 International Conference on Data 
Science and Advanced Analytics (IEEE 
DSAA2015), 19-21 October 2015, 
Grenoble, France. 
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Technical Activities 

• The DMTC (Data Mining Technical 
Committee) has been changed to Data 
Mining and Big Data Analytics Technical 
Committee 

• Two Big Data related task forces: 
– Big Data 
– Data Science and Advanced Analytics 



Other TCs in CIS 
• Neural Networks TC 
• Fuzzy Systems TC 
• Evolutionary Computation TC 
• Computational Finance and Economics TC 
• Games TC 
• Adaptive Dynamic Programming and 

Reinforcement Learning TC 
• Emergent Technologies TC 
• Intelligent Systems Applications TC 
• Bioinformatics and Bioengineering TC 
• Autonomous Mental Development TC 

 



Looking Forward 
--- CIS Perspective 

• Outreach to non-academic communities in 
promoting and supporting our members in 
BD related activities. 
– One outreach workshop in Lima in March 

2014 
– Another workshop in URI on October 3. 

• Close collaborations with other IEEE 
societies in joint publications, 
conferences, technical activities, 
education activities, … 



Looking Further  
--- CIS Perspective (I) 

• There appears to be more talks on 
Volume than other Vs, e.g., veracity, 
variability, and velocity. 

• One reason might be that volume is 
easier to measure. 

• CIS has been keen on other Vs as well, 
e.g., our TNNLS special issues. 



Looking Further  
--- CIS Perspective (II) 

• Is there a unique set of core knowledge 
that defines and underpins the Big Data? 
– Where does it different from existing fields 

other than a vague word “Big”? 
– What are the new scientific questions that 

are unique to the Bid Data? 
– How can we capture such core knowledge? 
– How can we provide education programs to 

our members? 



Looking Even Further 
--- CIS Perspective (I) 

• What could and should be added to the 
core knowledge? 

• What new technologies could be 
developed based on such core 
knowledge? 

 



Looking Even Further 
--- CIS Perspective (II) 

• How could CIS promote the fundamental 
advances of the BD field, especially in 
algorithms and analytics? 

• How could CIS support its members in 
their pursue of the field? What would be 
appropriate education programs? 

• What are the new opportunities for our 
members? 



Thank you! 
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